Operadores débilmente compactos e incondicionalmente convergentes en espacios de funciones continuas con valores vectoriales.
Soit un espace localement compact. Tout opérateur dissipatif de domaine dense dans est limite d’opérateurs dissipatifs bornés. Ce résultat permet, dans le cas où est un espace homogène, de démontrer que tout opérateur dissipatif, de domaine dense et invariant sur se prolonge en le générateur infinitésimal d’un semi-groupe à contraction invariant sur .À tout opérateur vérifiant le principe du maximum positif sur et de domaine assez riche, on associe un opérateur bilinéaire , appelé...
For any uniformly closed subalgebra A of C(K) for a compact Hausdorff space K without isolated points and , we show that every complete norm on A which makes continuous the multiplication by is equivalent to provided that has no interior points whenever λ lies in ℂ. Actually, these assertions are equivalent if A = C(K).
Description of multiplication operators generated by a sequence and composition operators induced by a partition on Lorentz sequence spaces , , is presented.
We find the norm of the Hardy operator minus the identity acting on the cone of radially decreasing functions on minimal Lorentz spaces (restricted type estimates).