Displaying 41 – 60 of 125

Showing per page

Besov spaces and 2-summing operators

M. A. Fugarolas (2004)

Colloquium Mathematicae

Let Π₂ be the operator ideal of all absolutely 2-summing operators and let I m be the identity map of the m-dimensional linear space. We first establish upper estimates for some mixing norms of I m . Employing these estimates, we study the embedding operators between Besov function spaces as mixing operators. The result obtained is applied to give sufficient conditions under which certain kinds of integral operators, acting on a Besov function space, belong to Π₂; in this context, we also consider the...

Besov spaces and function series on Lie groups

Leszek Skrzypczak (1993)

Commentationes Mathematicae Universitatis Carolinae

In the paper we investigate the absolute convergence in the sup-norm of Harish-Chandra's Fourier series of functions belonging to Besov spaces defined on non-compact connected Lie groups.

Besov spaces and function series on Lie groups (II).

Leszek Skrzypczak (1993)

Collectanea Mathematica

In this paper we investigate the absolute convergence in the sup-norm of two-sided Harish-Chandra's Fourier series of functions belonging to Zygmund-Hölder spaces defined on non-compact connected Lie groups.[Part I of the article in MR1240211].

Besov spaces on spaces of homogeneous type and fractals

Dachun Yang (2003)

Studia Mathematica

Let Γ be a compact d-set in ℝⁿ with 0 < d ≤ n, which includes various kinds of fractals. The author shows that the Besov spaces B p q s ( Γ ) defined by two different and equivalent methods, namely, via traces and quarkonial decompositions in the sense of Triebel are the same spaces as those obtained by regarding Γ as a space of homogeneous type when 0 < s < 1, 1 < p < ∞ and 1 ≤ q ≤ ∞.

Besov spaces on symmetric manifolds—the atomic decomposition

Leszek Skrzypczak (1997)

Studia Mathematica

We give the atomic decomposition of the inhomogeneous Besov spaces defined on symmetric Riemannian spaces of noncompact type. As an application we get a theorem of Bernstein type for the Helgason-Fourier transform.

Bessel potentials in Orlicz spaces.

N. Aïssaoui (1997)

Revista Matemática de la Universidad Complutense de Madrid

It is shown that Bessel potentials have a representation in term of measure when the underlying space is Orlicz. A comparison between capacities and Lebesgue measure is given and geometric properties of Bessel capacities in this space are studied. Moreover it is shown that if the capacity of a set is null, then the variation of all signed measures of this set is null when these measures are in the dual of an Orlicz-Sobolev space.

Currently displaying 41 – 60 of 125