Displaying 1141 – 1160 of 4027

Showing per page

Factorization of Montel operators

S. Dierolf, P. Domański (1993)

Studia Mathematica

Consider the following conditions. (a) Every regular LB-space is complete; (b) if an operator T between complete LB-spaces maps bounded sets into relatively compact sets, then T factorizes through a Montel LB-space; (c) for every complete LB-space E the space C (βℕ, E) is bornological. We show that (a) ⇒ (b) ⇒ (c). Moreover, we show that if E is Montel, then (c) holds. An example of an LB-space E with a strictly increasing transfinite sequence of its Mackey derivatives is given.

Factorization of operators on C*-algebras

Narcisse Randrianantoanina (1998)

Studia Mathematica

Let A be a C*-algebra. We prove that every absolutely summing operator from A into 2 factors through a Hilbert space operator that belongs to the 4-Schatten-von Neumann class. We also provide finite-dimensional examples that show that one cannot replace the 4-Schatten-von Neumann class by the p-Schatten-von Neumann class for any p < 4. As an application, we show that there exists a modulus of capacity ε → N(ε) so that if A is a C*-algebra and T Π 1 ( A , 2 ) with π 1 ( T ) 1 , then for every ε >0, the ε-capacity of...

Factorization of vector measures and their integration operators

José Rodríguez (2016)

Colloquium Mathematicae

Let X be a Banach space and ν a countably additive X-valued measure defined on a σ-algebra. We discuss some generation properties of the Banach space L¹(ν) and its connection with uniform Eberlein compacta. In this way, we provide a new proof that L¹(ν) is weakly compactly generated and embeds isomorphically into a Hilbert generated Banach space. The Davis-Figiel-Johnson-Pełczyński factorization of the integration operator I ν : L ¹ ( ν ) X is also analyzed. As a result, we prove that if I ν is both completely continuous...

Factorization of weakly continuous holomorphic mappings

Manuel González, Joaqín Gutiérrez (1996)

Studia Mathematica

We prove a basic property of continuous multilinear mappings between topological vector spaces, from which we derive an easy proof of the fact that a multilinear mapping (and a polynomial) between topological vector spaces is weakly continuous on weakly bounded sets if and only if it is weakly uniformly} continuous on weakly bounded sets. This result was obtained in 1983 by Aron, Hervés and Valdivia for polynomials between Banach spaces, and it also holds if the weak topology is replaced by a coarser...

Factorization theorem for 1 -summing operators

Irene Ferrando (2011)

Czechoslovak Mathematical Journal

We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for 1 -summing operators between Banach spaces.

Faisceaux d'espaces de Sobolev et principes du minimum

Denis Feyel, A. de La Pradelle (1975)

Annales de l'institut Fourier

On montre que le faisceau des sursolutions locales dans W loc 2 d’un certain opérateur elliptique L est maximal pour un principe du minimum adapté aux espaces de Sobolev. La continuité de la réduite variationnelle des éléments continus permet alors d’étudier des représentants s.c.i.

Familias compactas de funciones holomorfas con desarrollo asintótico en abierto de Cn.

Piedad Guijarro Carranza (1986)

Stochastica

Let U be an open convex subset of Cn, n belonging to N, such that the set of all polinomies is dense in the space of all holomorphic and complex functions on U, (H(U), t0), where t0 is the open-compact topology.We endow the space HK(U) of all holomorphic functions on U that have asymptotic expansion at the origin with a metric and we study a particular compact subset of HK(U).

Families of functions dominated by distributions of C -classes of mappings

Goo Ishikawa (1983)

Annales de l'institut Fourier

A subsheaf of the sheaf Ω of germs C functions over an open subset Ω of R n is called a sheaf of sub C function. Comparing with the investigations of sheaves of ideals of Ω , we study the finite presentability of certain sheaves of sub C -rings. Especially we treat the sheaf defined by the distribution of Mather’s 𝒞 -classes of a C mapping.

Filters and sequences

Sławomir Solecki (2000)

Fundamenta Mathematicae

We consider two situations which relate properties of filters with properties of the limit operators with respect to these filters. In the first one, we show that the space of sequences having limits with respect to a Π 3 0 filter is itself Π 3 0 and therefore, by a result of Dobrowolski and Marciszewski, such spaces are topologically indistinguishable. This answers a question of Dobrowolski and Marciszewski. In the second one, we characterize universally measurable filters which fulfill Fatou’s lemma.

Fine behavior of functions whose gradients are in an Orlicz space

Jan Malý, David Swanson, William P. Ziemer (2009)

Studia Mathematica

For functions whose derivatives belong to an Orlicz space, we develop their "fine" properties as a generalization of the treatment found in [MZ] for Sobolev functions. Of particular importance is Theorem 8.8, which is used in the development in [MSZ] of the coarea formula for such functions.

Finite codimensional linear isometries on spaces of differentiable and Lipschitz functions

Hironao Koshimizu (2011)

Open Mathematics

We characterize finite codimensional linear isometries on two spaces, C (n)[0; 1] and Lip [0; 1], where C (n)[0; 1] is the Banach space of n-times continuously differentiable functions on [0; 1] and Lip [0; 1] is the Banach space of Lipschitz continuous functions on [0; 1]. We will see they are exactly surjective isometries. Also, we show that C (n)[0; 1] and Lip [0; 1] admit neither isometric shifts nor backward shifts.

Currently displaying 1141 – 1160 of 4027