A local version of the Dauns-Hofmann theorem.
Let , where the sum is taken over the lattice of all points k in having integer-valued components, j∈ℕ and . Let be either or (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on The aim of the paper is to clarify under what conditions is equivalent to .
We prove unconditionality of general Franklin systems in , where X is a UMD space and where the general Franklin system corresponds to a quasi-dyadic, weakly regular sequence of knots.
We give characterizations of weighted Besov-Lipschitz and Triebel-Lizorkin spaces with weights via a smooth kernel which satisfies “minimal” moment and Tauberian conditions. The results are stated in terms of the mixed norm of a certain maximal function of a distribution in these weighted spaces.
Let G(X) denote the smallest (von Neumann) regular ring of real-valued functions with domain X that contains C(X), the ring of continuous real-valued functions on a Tikhonov topological space (X,τ). We investigate when G(X) coincides with the ring of continuous real-valued functions on the space , where is the smallest Tikhonov topology on X for which and is von Neumann regular. The compact and metric spaces for which are characterized. Necessary, and different sufficient, conditions...
The purpose of this paper is to provide a new characterization of the Sobolev space . We also show a new proof of the characterization of the Sobolev space , 1 ≤ p < ∞, in terms of Poincaré inequalities.
In this paper we prove a new convexity property for L₁ that resembles uniform convexity. We then develop a general theory that leads from the convexity property through normal structure to a fixed point property, via a theorem of Kirk. Applying this theory to L₁, we get the following type of normal structure: any convex subset of L₁ of positive diameter that is compact for the topology of convergence locally in measure, must have a radius that is smaller than its diameter. Indeed, a stronger result...