Displaying 1481 – 1500 of 4027

Showing per page

Interpolation on families of characteristic functions

Michael Cwikel, Archil Gulisashvili (2000)

Studia Mathematica

We study a problem of interpolating a linear operator which is bounded on some family of characteristic functions. A new example is given of a Banach couple of function spaces for which such interpolation is possible. This couple is of the form Φ ¯ = ( B , L ) where B is an arbitrary Banach lattice of measurable functions on a σ-finite nonatomic measure space (Ω,Σ,μ). We also give an equivalent expression for the norm of a function ⨍ in the real interpolation space ( B , L ) θ , p in terms of the characteristic functions of...

Interpolation properties of a scale of spaces.

A. K. Lerner, L. Liflyand (2003)

Collectanea Mathematica

A scale of function spaces is considered which proved to be of considerable importance in analysis. Interpolation properties of these spaces are studied by means of the real interpolation method. The main result consists in demonstrating that this scale is interpolated in a way different from that for Lp spaces, namely, the interpolation space is not from this scale.

Intersections of minimal prime ideals in the rings of continuous functions

Swapan Kumar Ghosh (2006)

Commentationes Mathematicae Universitatis Carolinae

A space X is called μ -compact by M. Mandelker if the intersection of all free maximal ideals of C ( X ) coincides with the ring C K ( X ) of all functions in C ( X ) with compact support. In this paper we introduce φ -compact and φ ' -compact spaces and we show that a space is μ -compact if and only if it is both φ -compact and φ ' -compact. We also establish that every space X admits a φ -compactification and a φ ' -compactification. Examples and counterexamples are given.

Intertwining Multiplication Operators on Function Spaces

Bahman Yousefi, Leila Bagheri (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Suppose that X is a Banach space of analytic functions on a plane domain Ω. We characterize the operators T that intertwine with the multiplication operators acting on X.

Intrinsic characterizations of distribution spaces on domains

V. Rychkov (1998)

Studia Mathematica

We give characterizations of Besov and Triebel-Lizorkin spaces B p q s ( ) and F p q s ( ) in smooth domains n via convolutions with compactly supported smooth kernels satisfying some moment conditions. The results for s ∈ ℝ, 0 < p,q ≤ ∞ are stated in terms of the mixed norm of a certain maximal function of a distribution. For s ∈ ℝ, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ characterizations without use of maximal functions are also obtained.

Currently displaying 1481 – 1500 of 4027