Displaying 141 – 160 of 350

Showing per page

Some new inhomogeneous Triebel-Lizorkin spaces on metric measure spaces and their various characterizations

Dachun Yang (2005)

Studia Mathematica

Let ( X , ϱ , μ ) d , θ be a space of homogeneous type, i.e. X is a set, ϱ is a quasi-metric on X with the property that there are constants θ ∈ (0,1] and C₀ > 0 such that for all x,x’,y ∈ X, | ϱ ( x , y ) - ϱ ( x ' , y ) | C ϱ ( x , x ' ) θ [ ϱ ( x , y ) + ϱ ( x ' , y ) ] 1 - θ , and μ is a nonnegative Borel regular measure on X such that for some d > 0 and all x ∈ X, μ ( y X : ϱ ( x , y ) < r ) r d . Let ε ∈ (0,θ], |s| < ε and maxd/(d+ε),d/(d+s+ε) < q ≤ ∞. The author introduces new inhomogeneous Triebel-Lizorkin spaces F q s ( X ) and establishes their frame characterizations by first establishing a Plancherel-Pólya-type inequality...

Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces

Yongsheng Han, Dachun Yang (2003)

Studia Mathematica

New norms for some distributions on spaces of homogeneous type which include some fractals are introduced. Using inhomogeneous discrete Calderón reproducing formulae and the Plancherel-Pólya inequalities on spaces of homogeneous type, the authors prove that these norms give a new characterization for the Besov and Triebel-Lizorkin spaces with p, q > 1 and can be used to introduce new inhomogeneous Besov and Triebel-Lizorkin spaces with p, q ≤ 1 on spaces of homogeneous type. Moreover, atomic...

Some notes on embedding for anisotropic Sobolev spaces

Hongliang Li, Quinxiu Sun (2011)

Czechoslovak Mathematical Journal

In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, W Λ p , q ( w ) r 1 , , r n and W X r 1 , , r n , where Λ p , q ( w ) is the weighted Lorentz space and X is a rearrangement invariant space in n . The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of B p weights.

Some orthogonal decompositions of Sobolev spaces and applications

H. Begehr, Yu. Dubinskiĭ (2001)

Colloquium Mathematicae

Two kinds of orthogonal decompositions of the Sobolev space W̊₂¹ and hence also of W - 1 for bounded domains are given. They originate from a decomposition of W̊₂¹ into the orthogonal sum of the subspace of the Δ k -solenoidal functions, k ≥ 1, and its explicitly given orthogonal complement. This decomposition is developed in the real as well as in the complex case. For the solenoidal subspace (k = 0) the decomposition appears in a little different form. In the second kind decomposition the Δ k -solenoidal...

Some relations among volume, intrinsic perimeter and one-dimensional restrictions of B V functions in Carnot groups

Francescopaolo Montefalcone (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let 𝔾 be a k -step Carnot group. The first aim of this paper is to show an interplay between volume and 𝔾 -perimeter, using one-dimensional horizontal slicing. What we prove is a kind of Fubini theorem for 𝔾 -regular submanifolds of codimension one. We then give some applications of this result: slicing of B V 𝔾 functions, integral geometric formulae for volume and 𝔾 -perimeter and, making use of a suitable notion of convexity, called 𝔾 -convexity, we state a Cauchy type formula for 𝔾 -convex sets. Finally,...

Some remarks about metric spaces, spherical mappings, functions and their derivatives.

Stephen Semmes (1996)

Publicacions Matemàtiques

If p ∈ Rn, then we have the radial projection map from Rn {p} onto a sphere. Sometimes one can construct similar mappings on metric spaces even when the space is nontrivially different from Euclidean space, so that the existence of such a mapping becomes a sign of approximately Euclidean geometry. The existence of such spherical mappings can be used to derive estimates for the values of a function in terms of its gradient, which can then be used to derive Sobolev inequalities, etc. In this paper...

Currently displaying 141 – 160 of 350