The moduli of smoothness and convexity and the Rademacher averages of the trace classes (1≤p<∞)
Let X be a zero-dimensional, Hausdorff topological space and K a field with non-trivial, non-archimedean valuation under which it is complete. Then BC(X) is the vector space of the bounded continuous functions from X to K. We obtain necessary and sufficient conditions for BC(X), equipped with the strict topology, to be of countable type and to be nuclear in the non-archimedean sense.
The aim of this paper is to establish the equivalence between the non-pluripolarity of a compact set in a complex space and the property for the dual space of the space of germs of holomorphic functions on that compact set.
We obtain a representation as martingale transform operators for the rearrangement and shift operators introduced by T. Figiel. The martingale transforms and the underlying sigma algebras are obtained explicitly by combinatorial means. The known norm estimates for those operators are a direct consequence of our representation.
In this article, the orthogonal projection and the Riesz representation theorem are mainly formalized. In the first section, we defined the norm of elements on real Hilbert spaces, and defined Mizar functor RUSp2RNSp, real normed spaces as real Hilbert spaces. By this definition, we regarded sequences of real Hilbert spaces as sequences of real normed spaces, and proved some properties of real Hilbert spaces. Furthermore, we defined the continuity and the Lipschitz the continuity of functionals...
Let be a Banach lattice, and denote by its positive cone. The weak topology on is metrizable if and only if it coincides with the strong topology if and only if is Banach-lattice isomorphic to for a set . The weak topology on is metrizable if and only if is Banach-lattice isomorphic to a -space, where is a metrizable compact space.
Let (S, ∑, m) be any atomless finite measure space, and X any Banach space containing a copy of . Then the Bochner space is uncomplemented in ccabv(∑,m;X), the Banach space of all m-continuous vector measures that are of bounded variation and have a relatively compact range; and ccabv(∑,m;X) is uncomplemented in cabv(∑,m;X). It is conjectured that this should generalize to all Banach spaces X without the Radon-Nikodym property.
We study the properties of the weighted space and weighted set for boundary value problem with singularity.