On Lebesgue pseudonorms on
We investigate the classical embedding . The sharp asymptotic behaviour as s → 1 of the operator norm of this embedding is found. In particular, our result yields a refinement of the Bourgain, Brezis and Mironescu theorem concerning an analogous problem for the Sobolev-type embedding. We also give a different, elementary proof of the latter theorem.
We give in this paper conditions for a mapping to be globally injective in a topological vector space.
We define locally convex spaces LW and HW consisting of measurable and holomorphic functions in the unit ball, respectively, with the topology given by a family of weighted-sup seminorms. We prove that the Bergman projection is a continuous map from LW onto HW. These are the smallest spaces having this property. We investigate the topological and algebraic properties of HW.
In a 1987 paper, Cambanis, Hardin and Weron defined doubly stationary stable processes as those stable processes which have a spectral representation which is itself stationary, and they gave an example of a stationary symmetric stable process which they claimed was not doubly stationary. Here we show that their process actually had a moving average representation, and hence was doubly stationary. We also characterize doubly stationary processes in terms of measure-preserving regular set isomorphisms...
Several properties of the class of minimal Orlicz function spaces LF are described. In particular, an explicitly defined class of non-trivial minimal functions is shown, which provides concrete examples of Orlicz spaces without complemented copies of F-spaces.
We study the mappings of monotone type in Orlicz-Sobolev spaces. We introduce a new class as a generalization of and extend the definition of quasimonotone map. We also prove existence results for equations involving monotone-like mappings.