Approximationseigenschaft, Lifting und Kohomologie bei lokalkonvexen Produktgarben.
Let be the class of tempered distributions. For we denote by the Bessel potential of of order . We prove that if , then for any , , where , . Also, we give necessary and sufficient conditions in order that the Bessel potential of a tempered distribution of order belongs to the space.
Function spaces of type S are introduced and investigated in the literature. They are also applied to study the Cauchy problem. In this paper we shall extend the concept of these spaces to the context of Boehmian spaces and study the Fourier transform theory on these spaces. These spaces enable us to combine the theory of Fourier transform on these function spaces as well as their dual spaces.
This paper is an extended version of an invited talk presented during the Orlicz Centenary Conference (Poznań, 2003). It contains a brief survey of applications to classical problems of analysis of the theory of the so-called PLS-spaces (in particular, spaces of distributions and real analytic functions). Sequential representations of the spaces and the theory of the functor Proj¹ are applied to questions like solvability of linear partial differential equations, existence of a solution depending...
Colombeau product of de Rham's currents coincides with generalized Itano one. Sufficient conditions are found under which it is diffeomorphism invariant.