Fonctions harmoniques et spectre singulier
We show that the Fourier-Laplace series of a distribution on the real, complex or quarternionic projective space is uniformly Cesàro-summable to zero on a neighbourhood of a point if and only if this point does not belong to the support of the distribution.
The sub-Laplacian on the Heisenberg group is first decomposed into twisted Laplacians parametrized by Planck's constant. Using Fourier-Wigner transforms so parametrized, we prove that the twisted Laplacians are globally hypoelliptic in the setting of tempered distributions. This result on global hypoellipticity is then used to obtain Liouville's theorems for harmonic functions for the sub-Laplacian on the Heisenberg group.
MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf GorenfloWe generalize the two forms of the fractional derivatives (in Riemann-Liouville and Caputo sense) to spaces of generalized functions using appropriate techniques such as the multiplication of absolutely continuous function by the Heaviside function, and the analytical continuation. As an application, we give the two forms of the fractional derivatives of discontinuous functions in spaces of distributions.
On étudie en détail une décomposition microlocale analytique de la distribution suivant des distributions singulières en un seul point et dans une seule codirection. Cette décomposition est obtenue à partir d’opérateurs Fourier-Intégraux à phases complexes.On utilise ensuite cet outil pour démontrer le théorème de décomposition du front d’onde analytique des distributions. On établit également des théorèmes concernant la représentation globale des distributions comme sommes de valeurs au bord...