Previous Page 2

Displaying 21 – 24 of 24

Showing per page

Localizations of partial differential operators and surjectivity on real analytic functions

Michael Langenbruch (2000)

Studia Mathematica

Let P(D) be a partial differential operator with constant coefficients which is surjective on the space A(Ω) of real analytic functions on an open set Ω n . Then P(D) admits shifted (generalized) elementary solutions which are real analytic on an arbitrary relatively compact open set ω ⊂ ⊂ Ω. This implies that any localization P m , Θ of the principal part P m is hyperbolic w.r.t. any normal vector N of ∂Ω which is noncharacteristic for P m , Θ . Under additional assumptions P m must be locally hyperbolic.

Currently displaying 21 – 24 of 24

Previous Page 2