Displaying 61 – 80 of 83

Showing per page

Stochastic approximation properties in Banach spaces

V. P. Fonf, W. B. Johnson, G. Pisier, D. Preiss (2003)

Studia Mathematica

We show that a Banach space X has the stochastic approximation property iff it has the stochasic basis property, and these properties are equivalent to the approximation property if X has nontrivial type. If for every Radon probability on X, there is an operator from an L p space into X whose range has probability one, then X is a quotient of an L p space. This extends a theorem of Sato’s which dealt with the case p = 2. In any infinite-dimensional Banach space X there is a compact set K so that for...

Structure of measures on topological spaces.

José L. de María, Baltasar Rodríguez Salinas (1989)

Revista Matemática de la Universidad Complutense de Madrid

The Radon spaces of type (T), i.e., topological spaces for which every finite Borel measure on Omega is T-additive and T-regular are characterized. The class of these spaces is very wide and in particular it contains the Radon spaces. We extend the results of Marczewski an Sikorski to the sygma-metrizable spaces and to the subsets of the Banach spaces endowed with the weak topology. Finally, the completely additive families of measurable subsets related with the works of Hansell, Koumoullis, and...

The (sub/super)additivity assertion of Choquet

Heinz König (2003)

Studia Mathematica

The assertion in question comes from the short final section in Theory of capacities of Choquet (1953/54), in connection with his prototype of the subsequent Choquet integral. The problem was whether and when this operation is additive. Choquet had the much more abstract idea that all functionals in a certain wide class must be subadditive, and similarly for superadditivity. His treatment of this point was more like an outline, and his proof limited to a rather narrow special case. Thus the proper...

The symmetric Choquet integral with respect to Riesz-space-valued capacities

Antonio Boccuto, Beloslav Riečan (2008)

Czechoslovak Mathematical Journal

A definition of “Šipoš integral” is given, similarly to [3],[5],[10], for real-valued functions and with respect to Dedekind complete Riesz-space-valued “capacities”. A comparison of Choquet and Šipoš-type integrals is given, and some fundamental properties and some convergence theorems for the Šipoš integral are proved.

Wiener integral for the coordinate process under the σ-finite measure unifying Brownian penalisations

Kouji Yano (2011)

ESAIM: Probability and Statistics

Wiener integral for the coordinate process is defined under the σ-finite measure unifying Brownian penalisations, which has been introduced by [Najnudel et al., C. R. Math. Acad. Sci. Paris345 (2007) 459–466] and [Najnudel et al., MSJ Memoirs19. Mathematical Society of Japan, Tokyo (2009)]. Its decomposition before and after last exit time from 0 is studied. This study prepares for the author's recent study [K. Yano, J. Funct. Anal.258 (2010) 3492–3516] of Cameron-Martin formula for the...

Wiener integral for the coordinate process under the σ-finite measure unifying brownian penalisations

Kouji Yano (2011)

ESAIM: Probability and Statistics

Wiener integral for the coordinate process is defined under the σ-finite measure unifying Brownian penalisations, which has been introduced by [Najnudel et al., C. R. Math. Acad. Sci. Paris 345 (2007) 459–466] and [Najnudel et al., MSJ Memoirs 19. Mathematical Society of Japan, Tokyo (2009)]. Its decomposition before and after last exit time from 0 is studied. This study prepares for the author's recent study [K. Yano, J. Funct. Anal. 258 (2010) 3492–3516] of Cameron-Martin formula for the σ-finite...

Currently displaying 61 – 80 of 83