Displaying 281 – 300 of 1085

Showing per page

Espaces de Sobolev gaussiens

Denis Feyel, A. de La Pradelle (1989)

Annales de l'institut Fourier

Soit μ une mesure gaussienne sur un espace localement convexe E . On donne un nouveau point de vue sur le premier espace de Sobolev W ( E , μ ) construit sur E et μ . La différentielle f ' de f W ( E , μ ) est une fonction de deux variables ( x , y ) E × E , “quasi-linéaire” dans la seconde variable.La différentielle d’une intégrale stochastique est une intégrale stochastique sur E × E muni de μ × μ .On montre que la “procapacité gaussienne” naturelle est une vraie capacité si E est un espace de Banach ou de Fréchet ou le dual faible d’un espace...

Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space

Kun Soo Chang, Dong Hyun Cho, Il Yoo (2004)

Czechoslovak Mathematical Journal

In this paper, we introduce a simple formula for conditional Wiener integrals over C 0 ( 𝔹 ) , the space of abstract Wiener space valued continuous functions. Using this formula, we establish various formulas for a conditional Wiener integral and a conditional Feynman integral of functionals on C 0 ( 𝔹 ) in certain classes which correspond to the classes of functionals on the classical Wiener space introduced by Cameron and Storvick. We also evaluate the conditional Wiener integral and conditional Feynman integral...

Every separable L₁-predual is complemented in a C*-algebra

Wolfgang Lusky (2004)

Studia Mathematica

We show that every separable complex L₁-predual space X is contractively complemented in the CAR-algebra. As an application we deduce that the open unit ball of X is a bounded homogeneous symmetric domain.

Extendibility of polynomials and analytic functions on p

Daniel Carando (2001)

Studia Mathematica

We prove that extendible 2-homogeneous polynomials on spaces with cotype 2 are integral. This allows us to find examples of approximable non-extendible polynomials on p (1 ≤ p < ∞ ) of any degree. We also exhibit non-nuclear extendible polynomials for 4 < p < ∞. We study the extendibility of analytic functions on Banach spaces and show the existence of functions of infinite radius of convergence whose coefficients are finite type polynomials but which fail to be extendible.

Extending holomorphic maps in infinite dimensions

Bui Dac Tac (1991)

Annales Polonici Mathematici

Studying the sequential completeness of the space of germs of Banach-valued holomorphic functions at a points of a metric vector space some theorems on extension of holomorphic maps on Riemann domains over topological vector spaces with values in some locally convex analytic spaces are proved. Moreover, the extendability of holomorphic maps with values in complete C-spaces to the envelope of holomorphy for the class of bounded holomorphic functions is also established. These results are known in...

Currently displaying 281 – 300 of 1085