Page 1

Displaying 1 – 11 of 11

Showing per page

Ideally factored algebras.

Amyari, M., Mirzavaziri, M. (2008)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Ideals in big Lipschitz algebras of analytic functions

Thomas Vils Pedersen (2004)

Studia Mathematica

For 0 < γ ≤ 1, let Λ γ be the big Lipschitz algebra of functions analytic on the open unit disc which satisfy a Lipschitz condition of order γ on ̅. For a closed set E on the unit circle and an inner function Q, let J γ ( E , Q ) be the closed ideal in Λ γ consisting of those functions f Λ γ for which (i) f = 0 on E, (ii) | f ( z ) - f ( w ) | = o ( | z - w | γ ) as d(z,E),d(w,E) → 0, (iii) f / Q Λ γ . Also, for a closed ideal I in Λ γ , let E I = z ∈ : f(z) = 0 for every f ∈ I and let Q I be the greatest common divisor of the inner parts of non-zero functions in I....

Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable

Cyril Agrafeuil (2005)

Studia Mathematica

We denote by the unit circle and by the unit disc of ℂ. Let s be a non-negative real and ω a weight such that ω ( n ) = ( 1 + n ) s (n ≥ 0) and the sequence ( ω ( - n ) / ( 1 + n ) s ) n 0 is non-decreasing. We define the Banach algebra A ω ( ) = f ( ) : | | f | | ω = n = - + | f ̂ ( n ) | ω ( n ) < + . If I is a closed ideal of A ω ( ) , we set h ( I ) = z : f ( z ) = 0 ( f I ) . We describe all closed ideals I of A ω ( ) such that h⁰(I) is at most countable. A similar result is obtained for closed ideals of the algebra A s ( ) = f A ω ( ) : f ̂ ( n ) = 0 ( n < 0 ) without inner factor. Then we use this description to establish a link between operators with countable spectrum and interpolating sets...

Ideáux fermés d'une algèbre de Beurling régulière.

Eric Decreux (1998)

Publicacions Matemàtiques

The structure of closed ideals of a regular algebra containing the classical A∞ is considered. Several division and approximation results are proved and a characterization of those ideals whose intersection with A∞ is not {0} is obtained. A complete description of the ideals with countable hull is given, with applications to synthesis of hyperfunctions.

In search of the invisible spectrum

Nikolai Nikolski (1999)

Annales de l'institut Fourier

In this paper, we begin the study of the phenomenon of the “invisible spectrum” for commutative Banach algebras. Function algebras, formal power series and operator algebras will be considered. A quantitative treatment of the famous Wiener-Pitt-Sreider phenomenon for measure algebras on locally compact abelian (LCA) groups is given. Also, our approach includes efficient sharp estimates for resolvents and solutions of higher Bezout equations in terms of their spectral bounds. The smallest “spectral...

Currently displaying 1 – 11 of 11

Page 1