Ideally factored algebras.
For 0 < γ ≤ 1, let be the big Lipschitz algebra of functions analytic on the open unit disc which satisfy a Lipschitz condition of order γ on ̅. For a closed set E on the unit circle and an inner function Q, let be the closed ideal in consisting of those functions for which (i) f = 0 on E, (ii) as d(z,E),d(w,E) → 0, (iii) . Also, for a closed ideal I in , let = z ∈ : f(z) = 0 for every f ∈ I and let be the greatest common divisor of the inner parts of non-zero functions in I....
We denote by the unit circle and by the unit disc of ℂ. Let s be a non-negative real and ω a weight such that (n ≥ 0) and the sequence is non-decreasing. We define the Banach algebra . If I is a closed ideal of , we set . We describe all closed ideals I of such that h⁰(I) is at most countable. A similar result is obtained for closed ideals of the algebra without inner factor. Then we use this description to establish a link between operators with countable spectrum and interpolating sets...
The structure of closed ideals of a regular algebra containing the classical A∞ is considered. Several division and approximation results are proved and a characterization of those ideals whose intersection with A∞ is not {0} is obtained. A complete description of the ideals with countable hull is given, with applications to synthesis of hyperfunctions.
In this paper, we begin the study of the phenomenon of the “invisible spectrum” for commutative Banach algebras. Function algebras, formal power series and operator algebras will be considered. A quantitative treatment of the famous Wiener-Pitt-Sreider phenomenon for measure algebras on locally compact abelian (LCA) groups is given. Also, our approach includes efficient sharp estimates for resolvents and solutions of higher Bezout equations in terms of their spectral bounds. The smallest “spectral...