On a subalgebra of the algebra C([0,1]) whose maximal ideal space is a torus
Page 1 Next
Leonid Brevdo (1988)
Studia Mathematica
W. Żelazko (1972)
Studia Mathematica
Eberhard Kaniuth, Detlef Steiner (1973)
Mathematische Annalen
W. Żelazko (1981)
Studia Mathematica
Vladimír Müller (1979)
Commentationes Mathematicae Universitatis Carolinae
Jean Bourgain (1985)
Annales de l'institut Fourier
Assume a finite set of functions in , the space of bounded analytic functions on the open unit disc. We give a sufficient condition on a function in to belong to the norm-closure of the ideal generated by , namely the propertyfor some function : satisfying The main feature in the proof is an improvement in the contour-construction appearing in L. Carleson’s solution of the corona-problem. It is also shown that the propertyfor some constant , does not necessary imply that is...
Arhippainen, Jorma (1999)
International Journal of Mathematics and Mathematical Sciences
C.M. Edwards (1975)
Mathematische Annalen
L. Lindahl (1975)
Studia Mathematica
Zbigniew Słodkowski (1973)
Studia Mathematica
Antoni Wawrzyńczyk (2000)
Studia Mathematica
The class ω(A) of ideals consisting of topological zero divisors of a commutative Banach algebra A is studied. We prove that the maximal ideals of the class ω(A) are of codimension one.
Gunter Ritter, Susanna Papadopoulou (1982)
Monatshefte für Mathematik
John Daly (1971)
Studia Mathematica
W. Żelazko (1976)
Studia Mathematica
W. Żelazko (1983)
Studia Mathematica
W. Żelazko (1983)
Studia Mathematica
Peter Semrl (1991)
Aequationes mathematicae
Jorma Arhippainen (1992)
Studia Mathematica
Let X be a completely regular topological space and A a commutative locally m-convex algebra. We give a description of all closed and in particular closed maximal ideals of the algebra C(X,A) (= all continuous A-valued functions defined on X). The topology on C(X,A) is defined by a certain family of seminorms. The compact-open topology of C(X,A) is a special case of this topology.
Yngve Domar (1982)
Banach Center Publications
Aleksandar Torgašev (1978)
Publications de l'Institut Mathématique
Page 1 Next