Maximal subalgebra of Douglas algebra.
Let A be a complex Banach algebra with a unit e, let T, φ be continuous functionals, where T is linear, and let F be a nonlinear entire function. If T ∘ F = F ∘ φ and T(e) = 1 then T is multiplicative.
Let A be a complex Banach algebra with a unit e, let F be a nonconstant entire function, and let T be a linear functional with T(e)=1 and such that T∘F: A → ℂ is nonsurjective. Then T is multiplicative.
We generalize some technical results of Glicksberg to the realm of general operator algebras and use them to give a characterization of open and closed projections in terms of certain multiplier algebras. This generalizes a theorem of J. Wells characterizing an important class of ideals in uniform algebras. The difficult implication in our main theorem is that if a projection is open in an operator algebra, then the multiplier algebra of the associated hereditary subalgebra arises as the closure...