Expectations on B*-algebras.
On munit la classe des algèbres de Kac d’une nouvelle classe de morphismes, stable par dualité. Cela permet de rendre compte, dans les cas abélien ou symétrique, de la catégorie des groupes localement compacts munis des morphismes continus de groupe. Le lien avec les morphismes précédemment définis et beaucoup plus restrictifs est établi.
Given a completely bounded map from an operator space into a von Neumann algebra (or merely a unital dual algebra) , we define to be -semidiscrete if for any operator algebra , the tensor operator is bounded from into , with norm less than . We investigate this property and characterize it by suitable approximation properties, thus generalizing the Choi-Effros characterization of semidiscrete von Neumann algebras. Our work is an extension of some recent work of Pisier on an analogous...
Nous proposons une caractérisation géométrique des variétés de dimension ayant des groupes fondamentaux dont toutes les classes de conjugaison autres que sont infinies, c’est-à-dire dont les algèbres de von Neumann sont des facteurs de type : ce sont essentiellement les -variétés à groupes fondamentaux infinis qui n’admettent pas de fibration de Seifert. Autrement dit et plus précisément, soient une -variété connexe compacte et son groupe fondamental, qu’on suppose être infini et avec...