Partition-dependent stochastic measures and -deformed cumulants.
For C*-algebras A and B and a Hilbert space H, a class of bilinear maps Φ: A× B → L(H), analogous to completely positive linear maps, is studied. A Stinespring type representation theorem is proved, and in case A and B are commutative, the class is shown to coincide with that of positive bilinear maps. As an application, the extendibility of a positive operator bimeasure to a positive operator measure is shown to be equivalent to various conditions involving positive scalar bimeasures, pairs of...
In [AnsMonic, AnsBoolean], we investigated monic multivariate non-commutative orthogonal polynomials, their recursions, states of orthogonality, and corresponding continued fraction expansions. In this note, we collect a number of examples, demonstrating what these general results look like for the most important states on non-commutative polynomials, namely for various product states. In particular, we introduce a notion of a product-type state on polynomials, which covers all the non-commutative...
A simple axiomatic characterization of the general (infinite dimensional, noncommutative) Itô algebra is given and a pseudo-Euclidean fundamental representation for such algebra is described. The notion of Itô B*-algebra, generalizing the C*-algebra, is defined to include the Banach infinite dimensional Itô algebras of quantum Brownian and quantum Lévy motion, and the B*-algebras of vacuum and thermal quantum noise are characterized. It is proved that every Itô algebra is canonically decomposed...
A noncommutative analogue of limit theorems in classical probability theory for distributions of canonical pairs of observables is considered. A complete description of all limit probability operators which are quantum counterparts of the classical infinitely divisible and semistable laws is obtained in the case when scalar norming is generalised to norming by 2 × 2 matrices.
We present a new version of integration of time-adapted processes with respect to creation, annihilation and conservation processes on the full Fock space. Among the new features, in the first place, there is a new formulation of adaptedness which is both simpler and more general than the known ones. The new adaptedness allows for processes which are not restricted to be elements of some norm closure of the ∗-algebra which is generated by the basic creation processes.
We summarise recent results concerning quantum stochastic convolution cocycles in two contexts-purely algebraic and C*-algebraic. In each case the class of cocycles arising as the solution of a quantum stochastic differential equation is characterised and the form taken by the stochastic generator of a *-homomorphic cocycle is described. Throughout the paper a common viewpoint on the algebraic and C*-algebraic situations is emphasised; the final section treats the unifying example of convolution...
In this article we discuss the Catalan and super-Catalan (or Schröder) numbers. We start with some combinatorial interpretations of those numbers. We study two probability measures in the context of free probability, one whose moments are super-Catalan, and another, whose even moments are super-Catalan and odd moments are zero. With the use of the latter we also show some new formulae for evaluation of the Catalans in terms of super-Catalans and vice-versa.
We will show that the conditional first moment of the free deformed Poisson random variables (q = 0) corresponding to operators fulfilling the free relation is a linear function of the regression and the conditional variance also is a linear function of the regression. For this purpose we will first demonstrate some properties of the Wick product and then we will concentrate on the free deformed Poisson random variables.