Nonstable K-Theory Results for Some AH-Algebras.
A construction method is presented for a class of simple C*-algebras whose basic properties -including their real ranks- can be computed relatively easily, using linear algebra. A numerival invariant attached to the construction determines wether a given algebra has real rank 0 or 1. Moreover, these algebras all have stable rank 1, and each nonzero hereditary sub-C*-algebra contains a nonzero projection, yet there are examples in which the linear span of the projections is not dense. (This phenomenon...
In this paper, we present an analytic definition for the relative torsion for flat C*-algebra bundles over a compact manifold. The advantage of such a relative torsion is that it is defined without any hypotheses on the flat C*-algebra bundle. In the case where the flat C*-algebra bundle is of determinant class, we relate it easily to the L^2 torsion as defined in [7],[5].
We compute the -theory of -algebras generated by the left regular representation of left Ore semigroups satisfying certain regularity conditions. Our result describes the -theory of these semigroup -algebras in terms of the -theory for the reduced group -algebras of certain groups which are typically easier to handle. Then we apply our result to specific semigroups from algebraic number theory.