Previous Page 4

Displaying 61 – 68 of 68

Showing per page

The variational approach to the Dirichlet problem in C*-algebras

Fabio Cipriani (1998)

Banach Center Publications

The aim of this work is to develop the variational approach to the Dirichlet problem for generators of sub-Markovian semigroups on C*-algebras. KMS symmetry and the KMS condition allow the introduction of the notion of weak solution of the Dirichlet problem. We will then show that a unique weak solution always exists and that a generalized maximum principle holds true.

Toeplitz-Berezin quantization and non-commutative differential geometry

Harald Upmeier (1997)

Banach Center Publications

In this survey article we describe how the recent work in quantization in multi-variable complex geometry (domains of holomorphy, symmetric domains, tube domains, etc.) leads to interesting results and problems in C*-algebras which can be viewed as examples of the "non-commutative geometry" in the sense of A. Connes. At the same time, one obtains new functional calculi (of pseudodifferential type) with possible applications to partial differential equations and group representations.

Trivial noncommutative principal torus bundles

Stefan Wagner (2011)

Banach Center Publications

A (smooth) dynamical system with transformation group ⁿ is a triple (A,ⁿ,α), consisting of a unital locally convex algebra A, the n-torus ⁿ and a group homomorphism α: ⁿ → Aut(A), which induces a (smooth) continuous action of ⁿ on A. In this paper we present a new, geometrically oriented approach to the noncommutative geometry of trivial principal ⁿ-bundles based on such dynamical systems, i.e., we call a dynamical system (A,ⁿ,α) a trivial noncommutative principal ⁿ-bundle if each isotypic component...

Twisted spectral triples and covariant differential calculi

Ulrich Krähmer, Elmar Wagner (2011)

Banach Center Publications

Connes and Moscovici recently studied "twisted" spectral triples (A,H,D) in which the commutators [D,a] are replaced by D∘a - σ(a)∘D, where σ is a second representation of A on H. The aim of this note is to point out that this yields representations of arbitrary covariant differential calculi over Hopf algebras in the sense of Woronowicz. For compact quantum groups, H can be completed to a Hilbert space and the calculus is given by bounded operators. At the end, we discuss an explicit example of...

Currently displaying 61 – 68 of 68

Previous Page 4