Banach Algebras with Involution.
Given a complex Hilbert space H, we study the manifold of algebraic elements in . We represent as a disjoint union of closed connected subsets M of Z each of which is an orbit under the action of G, the group of all C*-algebra automorphisms of Z. Those orbits M consisting of hermitian algebraic elements with a fixed finite rank r, (0< r<∞) are real-analytic direct submanifolds of Z. Using the C*-algebra structure of Z, a Banach-manifold structure and a G-invariant torsionfree affine...
We establish a non-commutative analog of the classical Banach Principle on the almost everywhere convergence of sequences of measurable functions. The result is stated in terms of quasi-uniform (or almost uniform) convergence of sequences of measurable (with respect to a trace) operators affiliated with a semifinite von Neumann algebra. Then we discuss possible applications of this result.
We study Banach-Saks properties in symmetric spaces of measurable operators. A principal result shows that if the symmetric Banach function space E on the positive semiaxis with the Fatou property has the Banach-Saks property then so also does the non-commutative space E(ℳ,τ) of τ-measurable operators affiliated with a given semifinite von Neumann algebra (ℳ,τ).
We study a nonconventional ergodic average for asymptotically abelian weakly mixing C*-dynamical systems, related to a second iteration of Khinchin's recurrence theorem obtained by Bergelson in the measure-theoretic case. A noncommutative recurrence theorem for such systems is obtained as a corollary.
Given a smooth S¹-foliated bundle, A. Connes has shown the existence of an additive morphism ϕ from the K-theory group of the foliation C*-algebra to the scalar field, which factorizes, via the assembly map, the Godbillon-Vey class, which is the first secondary characteristic class, of the classifying space. We prove the invariance of this map under a bilipschitz homeomorphism, extending a previous result for maps of class C¹ by H. Natsume.
We present a generalization of the classical central limit theorem to the case of non-commuting random variables which are bm-independent and indexed by a partially ordered set. As the set of indices I we consider discrete lattices in symmetric positive cones, with the order given by the cones. We show that the limit measures have moments which satisfy recurrences generalizing the recurrence for the Catalan numbers.
A normal Banach quasi *-algebra (,) has a distinguished Banach *-algebra consisting of bounded elements of . The latter *-algebra is shown to coincide with the set of elements of having finite spectral radius. If the family () of bounded invariant positive sesquilinear forms on contains sufficiently many elements then the Banach *-algebra of bounded elements can be characterized via a C*-seminorm defined by the elements of ().
Let H be a separable complex Hilbert space, 𝓐 a von Neumann algebra in 𝓛(H), ϕ a faithful, normal state on 𝓐, and 𝓑 a commutative von Neumann subalgebra of 𝓐. Given a sequence (Xₙ: n ≥ 1) of operators in 𝓑, we examine the relations between bundle convergence in 𝓑 and bundle convergence in 𝓐.