The search session has expired. Please query the service again.
We study, in a Hilbert framework, some abstract parabolic variational inequalities, governed by reflecting subgradients with multiplicative perturbation, of the following type: y´(t)+ Ay(t)+0.t Θ(t,y(t)) ∂φ(y(t))∋f(t,y(t)),y(0) = y0,t ∈[0,T] where A is a linear self-adjoint operator, ∂φ is the subdifferential operator of a proper lower semicontinuous convex function φ defined on a suitable Hilbert space, and Θ is the perturbing term which acts on the set of reflecting directions, destroying the...
Soit une application d’un groupe dans le groupe des opérateurs unitaires sur un espace de Hilbert. Si est un opérateur compact pour tous , quelles sont les obstructions à l’existence d’un homomorphisme avec compact pour tout ? Nous étudions ici les cas où est une somme amalgamée de groupes finis et où est un produit semi-direct d’un groupe fini par .
In this paper, we introduce Pexiderized generalized operators on certain special spaces introduced by Bielecki-Czerwik and investigate their norms.
This is a survey article about a theory of a Poisson boundary associated with a discrete quantum group. The main problem of the theory, that is, the identification problem is explained and solved for some examples.
A new proof is obtained to the following fact: a Rickart C*-algebra satisfies polar decomposition. Equivalently, matrix algebras over a Rickart C*-algebra are also Rickart C*-algebras.
Currently displaying 1 –
20 of
58