Displaying 141 – 160 of 192

Showing per page

On the relation between complex and real methods of interpolation

Mieczysław Mastyło, Vladimir Ovchinnikov (1997)

Studia Mathematica

We study those compatible couples of Banach spaces for which the complex method interpolation spaces are also described by the K-method of interpolation. As an application we present counter-examples to Cwikel's conjecture that all interpolation spaces of a Banach couple are described by the K-method whenever all complex interpolation spaces have this property.

Ondelettes, espaces d’interpolation et applications

Albert Cohen (1999/2000)

Séminaire Équations aux dérivées partielles

Nous établissons des résultats d’interpolation non-standards entre les espaces de Besov et les espaces L 1 et B V , avec des applications aux lemmes de régularité en moyenne et aux inégalités de type Gagliardo-Nirenberg. La preuve de ces résultats utilise les décompositions dans des bases d’ondelettes.

Real interpolation and compactness.

Fernando Cobos Díaz (1989)

Revista Matemática de la Universidad Complutense de Madrid

The behavior of compactness under real interpolation real is discussed. Classical results due to Krasnoselskii, Lions-Peetre, Persson, and Hayakawa are described, as well as others obtained very recently by Edmunds, Potter, Fernández, and the author.

Real interpolation for families of Banach spaces

Maria Carro (1994)

Studia Mathematica

We develop a new method of real interpolation for infinite families of Banach spaces that covers the methods of Lions-Peetre, Sparr for N spaces, Fernández for 2 N spaces and the recent method of Cobos-Peetre.

Real method of interpolation on subcouples of codimension one

S. V. Astashkin, P. Sunehag (2008)

Studia Mathematica

We find necessary and sufficient conditions under which the norms of the interpolation spaces ( N , N ) θ , q and ( X , X ) θ , q are equivalent on N, where N is the kernel of a nonzero functional ψ ∈ (X₀ ∩ X₁)* and N i is the normed space N with the norm inherited from X i (i = 0,1). Our proof is based on reducing the problem to its partial case studied by Ivanov and Kalton, where ψ is bounded on one of the endpoint spaces. As an application we completely resolve the problem of when the range of the operator T θ = S - 2 θ I (S denotes the...

Some properties of the Pisier-Zu interpolation spaces

A. Sersouri (1993)

Colloquium Mathematicae

For a closed subset I of the interval [0,1] we let A(I) = [v1(I),C(I)](1/2)2. We show that A(I) is isometric to a 1-complemented subspace of A(0,1), and that the Szlenk index of A(I) is larger than the Cantor index of I. We also investigate, for ordinals η < ω1, the bases structures of A(η), A*(η), and A * ( η ) [the isometric predual of A(η)]. All the results of this paper extend, with obvious changes in the proofs, to the interpolation spaces [ v 1 ( I ) , C ( I ) ] θ q .

Currently displaying 141 – 160 of 192