Previous Page 4

Displaying 61 – 78 of 78

Showing per page

Sums of commuting operators with maximal regularity

Christian Le Merdy, Arnaud Simard (2001)

Studia Mathematica

Let Y be a Banach space and let S L p be a subspace of an L p space, for some p ∈ (1,∞). We consider two operators B and C acting on S and Y respectively and satisfying the so-called maximal regularity property. Let ℬ and be their natural extensions to S ( Y ) L p ( Y ) . We investigate conditions that imply that ℬ + is closed and has the maximal regularity property. Extending theorems of Lamberton and Weis, we show in particular that this holds if Y is a UMD Banach lattice and e - t B is a positive contraction on L p for any...

Supertauberian operators and perturbations.

M. González, A. Martínez-Abejón (1993)

Extracta Mathematicae

Upper semi-Fredholm operators and tauberian operators in Banach spaces admit the following perturbative characterizations [6], [2]: An operator T: X --> Y is upper semi-Fredholm (tauberian) if and only if for every compact operator K: X --> Y the kernel N(T+K) is finite dimensional (reflexive). In [7] Tacon introduces an intermediate class between upper semi-Fredholm operators and tauberian operators, the supertauberian operators, and he studies this class using non-standard analysis....

Sur les fonctions C et les distributions qui appartiennent à la classe de Bernstein

Jean-Claude Tougeron (1979)

Annales de l'institut Fourier

Soient 𝔑 n (resp. n ) l’anneau des germes de fonctions de Nash (resp. l’anneau des germes de fonctions C ) à l’origine de R n : n (resp. n ' ) le module sur 𝔑 n des germes de fonctions de Bernstein C (resp. le module sur 𝔑 n des germes de distributions de Bernstein) à l’origine de R n . Les deux résultats principaux de l’article sont les suivants : n ' est un module injectif sur 𝔑 n et n / n est un module plat sur 𝔑 n .

Currently displaying 61 – 78 of 78

Previous Page 4