Hereditarily normaloid operators.
A Banach space operator T belonging to B(X) is said to be hereditarily normaloid, T ∈ HN, if every part of T is normaloid; T ∈ HN is totally hereditarily normaloid, T ∈ THN, if every invertible part of T is also normaloid; and T ∈ CHN if either T ∈ THN or T - λI is in HN for every complex number λ. Class CHN is large; it contains a number of the commonly considered classes of operators. We study operators T ∈ CHN, and prove that the Riesz projection associated with a λ ∈ isoσ(T), T ∈ CHN ∩ B(H)...