Page 1

Displaying 1 – 13 of 13

Showing per page

On a decomposition for pairs of commuting contractions

Zbigniew Burdak (2007)

Studia Mathematica

A new decomposition of a pair of commuting, but not necessarily doubly commuting contractions is proposed. In the case of power partial isometries a more detailed decomposition is given.

On a property of weak resolvents and its application to a spectral problem

Yoichi Uetake (1997)

Annales Polonici Mathematici

We show that the poles of a resolvent coincide with the poles of its weak resolvent up to their orders, for operators on Hilbert space which have some cyclic properties. Using this, we show that a theorem similar to the Mlak theorem holds under milder conditions, if a given operator and its adjoint have cyclic vectors.

On C 0 · multi-contractions having a regular dilation

Dan Popovici (2005)

Studia Mathematica

Commuting multi-contractions of class C 0 · and having a regular isometric dilation are studied. We prove that a polydisc contraction of class C 0 · is the restriction of a backwards multi-shift to an invariant subspace, extending a particular case of a result by R. E. Curto and F.-H. Vasilescu. A new condition on a commuting multi-operator, which is equivalent to the existence of a regular isometric dilation and improves a recent result of A. Olofsson, is obtained as a consequence.

On Connection between Characterestic Functions and the Caratheodori Class Functions

Zolotarev, Vladimir A., Hatamleh, Raéd (2006)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 47A65, 45S78.Connection of characteristic functions S(z) of nonunitary operator T with the functions of Caratheodori class is established. It was demonstrated that the representing measures from integral representation of the function of Caratheodori's class are defined by restrictions of spectral measures of unitary dilation, of a restricted operator T on the corresponding defect subspaces.

Operator positivity and analytic models of commuting tuples of operators

Monojit Bhattacharjee, Jaydeb Sarkar (2016)

Studia Mathematica

We study analytic models of operators of class C · 0 with natural positivity assumptions. In particular, we prove that for an m-hypercontraction T C · 0 on a Hilbert space , there exist Hilbert spaces and ⁎ and a partially isometric multiplier θ ∈ ℳ (H²(),A²ₘ(⁎)) such that θ = A ² ( ) θ H ² ( ) and T P θ M z | θ , where A²ₘ(⁎) is the ⁎-valued weighted Bergman space and H²() is the -valued Hardy space over the unit disc . We then proceed to study analytic models for doubly commuting n-tuples of operators and investigate their applications...

Currently displaying 1 – 13 of 13

Page 1