Page 1

Displaying 1 – 5 of 5

Showing per page

Tensor product of left n-invertible operators

B. P. Duggal, Vladimir Müller (2013)

Studia Mathematica

A Banach space operator T ∈ has a left m-inverse (resp., an essential left m-inverse) for some integer m ≥ 1 if there exists an operator S ∈ (resp., an operator S ∈ and a compact operator K ∈ ) such that i = 0 m ( - 1 ) i m i S m - i T m - i = 0 (resp., i = 0 m ( - 1 ) i m i T m - i S m - i = K ). If T i is left m i -invertible (resp., essentially left m i -invertible), then the tensor product T₁ ⊗ T₂ is left (m₁ + m₂-1)-invertible (resp., essentially left (m₁ + m₂-1)-invertible). Furthermore, if T₁ is strictly left m-invertible (resp., strictly essentially left m-invertible), then...

Currently displaying 1 – 5 of 5

Page 1