For a precompact subset K of a Hilbert space we prove the following inequalities:
, n ∈ ℕ,
and
,
k,n ∈ ℕ, where cₙ(cov(K)) is the nth Gelfand number of the absolutely convex hull of K and and denote the kth entropy and kth dyadic entropy number of K, respectively. The inequalities are, essentially, a reformulation of the corresponding inequalities given in [CKP] which yield asymptotically optimal estimates of the Gelfand numbers cₙ(cov(K)) provided that the entropy numbers εₙ(K) are slowly...