Spectral measures and automatic continuity.
This paper initially considers a class of unbounded Jacobi matrices defined by an increasing sequence of repeated weights. Spectral parameters are then introduced in various ways to allow the authors to study the nature and location of the spectrum as a function of these parameters.
If T is a bounded operator on a separable complex Hilbert space ℋ, an invariant subspace ℳ for T is stable provided that whenever is a sequence of operators such that , there is a sequence of subspaces , with in for all n, such that in the strong operator topology. If the projections converge in norm, ℳ is called a norm stable invariant subspace. This paper characterizes the stable invariant subspaces of the unilateral shift of finite multiplicity and normal operators. It also shows that...
Two characterizations of the reductivity of a cyclic normal operator in Hilbert space are proved: the equality of the sets of cyclic and *-cyclic vectors, and the equality L²(μ) = P²(μ) for every measure μ equivalent to the scalar-valued spectral measure of the operator. A cyclic subnormal operator is reductive if and only if the first condition is satisfied. Several consequences are also presented.
For an unbounded operator S the question whether its subnormality can be built up from that of every , the restriction of S to a cyclic space generated by f in the domain of S, is analyzed. Though the question at large has been left open some partial results are presented and a possible way to prove it is suggested as well.