Page 1

Displaying 1 – 5 of 5

Showing per page

Lie algebras generated by Jordan operators

Peng Cao, Shanli Sun (2008)

Studia Mathematica

It is proved that if J i is a Jordan operator on a Hilbert space with the Jordan decomposition J i = N i + Q i , where N i is normal and Q i is compact and quasinilpotent, i = 1,2, and the Lie algebra generated by J₁,J₂ is an Engel Lie algebra, then the Banach algebra generated by J₁,J₂ is an Engel algebra. Some results for normal operators and Jordan operators on Banach spaces are given.

Logarithmic concavity, unitarity and selfadjointness

Jan Stochel (2005)

Banach Center Publications

Isometric automorphisms of normed linear spaces are characterized by suitable concavity properties of powers of operators. Bounded selfadjoint operators in Hilbert spaces are described by parallel concavity properties of the exponential group. Unbounded infinitesimal generators of 𝓒₀-groups of Hilbert space operators having concavity properties are characterized as well.

Currently displaying 1 – 5 of 5

Page 1