The complete hyperexpansivity analog of the Embry conditions
The Embry conditions are a set of positivity conditions that characterize subnormal operators (on Hilbert spaces) whose theory is closely related to the theory of positive definite functions on the additive semigroup ℕ of non-negative integers. Completely hyperexpansive operators are the negative definite counterpart of subnormal operators. We show that completely hyperexpansive operators are characterized by a set of negativity conditions, which are the natural analog of the Embry conditions for...