Cartesian and Polar Decompositions of Hypernormal Operators.
We describe the centered weighted composition operators on in terms of their defining symbols. Our characterizations extend Embry-Wardrop-Lambert’s theorem on centered composition operators.
Let denote a complex, infinite-dimensional, separable Hilbert space, and for any such Hilbert space , let () denote the algebra of bounded linear operators on . We show that for any co-analytic, right-invertible T in (), αT is hypercyclic for every complex α with , where . In particular, every co-analytic, right-invertible T in () is supercyclic.
Motivated by some structural properties of Drury-Arveson d-shift, we investigate a class of functions consisting of polynomials and completely monotone functions defined on the semi-group ℕ of non-negative integers, and its operator-theoretic counterpart which we refer to as the class of completely hypercontractive tuples of finite order. We obtain a Lévy-Khinchin type integral representation for the spherical generating tuples associated with such operator tuples and discuss its applications.
In this paper the author proved the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with variable exponent. As an application he proved the boundedness of certain sublinear operators on the weighted variable Lebesgue space. The proof of the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent does not contain any mistakes. But in the proof of the boundedness of certain sublinear operators on the weighted...