Weighted composition operators between two -spaces
Let ϕ: → and ψ: → ℂ be analytic maps. They induce a weighted composition operator acting between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces. Under some assumptions on the weights we give a necessary as well as a sufficient condition for such an operator to be bounded resp. compact.
Let H() denote the space of all holomorphic functions on the unit ball ⊂ ℂⁿ. Let φ be a holomorphic self-map of and u∈ H(). The weighted composition operator on H() is defined by . We investigate the boundedness and compactness of induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.
The boundedness, compactness and closedness of the range of weighted composition operators acting on weighted Lorentz spaces L(p,q,wdμ) for 1 < p ≤ ∞, 1 ≤ q ≤ ∞ are characterized.