The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The Nevanlinna algebras, , of this paper are the variants of classical weighted area Nevanlinna classes of analytic functions on = z ∈ ℂ: |z| < 1. They are F-algebras, neither locally bounded nor locally convex, with a rich duality structure.
For s = (α+2)/p, the algebra of analytic functions f: → ℂ such that as |z| → 1 is the Fréchet envelope of . The corresponding algebra of analytic f: → ℂ such that is a complete metric space but fails to be a topological vector space. is also...
Let be a holomorphic function and a holomorphic self-map of the open unit disk in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators from Zygmund type spaces to Bloch type spaces in in terms of , , their derivatives, and , the -th power of . Moreover, we obtain some similar estimates for the essential norms of the operators , from which sufficient and necessary conditions of compactness of follows immediately.
Let ψ and φ be analytic functions on the open unit disk with φ() ⊆ . We give new characterizations of the bounded and compact weighted composition operators W ψ,ϕ from the Hardy spaces H p, 1 ≤ p ≤ ∞, the Bloch space B, the weighted Bergman spaces A αp, α > − 1,1 ≤ p < ∞, and the Dirichlet space to the Bloch space in terms of boundedness (respectively, convergence to 0) of the Bloch norms of W ψ,ϕ f for suitable collections of functions f in the respective spaces. We also obtain characterizations...
Let be a Banach space of analytic functions on the open unit disk and a subset of linear isometries on . Sufficient conditions are given for non-supercyclicity of . In particular, we show that the semigroup of linear isometries on the spaces (), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space or the Bergman space (, ) are not supercyclic....
The aim of the paper is to propose a definition of numerical range of an operator on reflexive Banach spaces. Under this definition the numerical range will possess the basic properties of a canonical numerical range. We will determine necessary and sufficient conditions under which the numerical range of a composition operator on a weighted Hardy space is closed. We will also give some necessary conditions to show that when the closure of the numerical range of a composition operator on a small...
This paper is a short survey on the numerical range of some composition operators. The first part is devoted to composition operators on the Hilbert Hardy space H2 on the unit disk. The results are due to P. Bourdon, J. Shapiro and V. Matache.In the second part we study the numerical range of composition operators on the Hilbert space H2 of Dirichlet series. These results are due to H. Queffélec and the author.The third part is devoted to compactness connected with fixed points in the setting of...
Currently displaying 1 –
8 of
8