Previous Page 2

Displaying 21 – 28 of 28

Showing per page

Spectral transition parameters for a class of Jacobi matrices

Joanne Dombrowski, Steen Pedersen (2002)

Studia Mathematica

This paper initially considers a class of unbounded Jacobi matrices defined by an increasing sequence of repeated weights. Spectral parameters are then introduced in various ways to allow the authors to study the nature and location of the spectrum as a function of these parameters.

The Hahn-Exton q-Bessel function as the characteristic function of a Jacobi matrix

F. Štampach, P. Šťovíček (2014)

Special Matrices

A family T(ν), ν ∈ ℝ, of semiinfinite positive Jacobi matrices is introduced with matrix entries taken from the Hahn-Exton q-difference equation. The corresponding matrix operators defined on the linear hull of the canonical basis in ℓ2(ℤ+) are essentially self-adjoint for |ν| ≥ 1 and have deficiency indices (1, 1) for |ν| < 1. A convenient description of all self-adjoint extensions is obtained and the spectral problem is analyzed in detail. The spectrum is discrete and the characteristic equation...

Unbounded Jacobi Matrices with Empty Absolutely Continuous Spectrum

Petru Cojuhari, Jan Janas (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Sufficient conditions for the absence of absolutely continuous spectrum for unbounded Jacobi operators are given. A class of unbounded Jacobi operators with purely singular continuous spectrum is constructed as well.

Widom factors for the Hilbert norm

Gökalp Alpan, Alexander Goncharov (2015)

Banach Center Publications

Given a probability measure μ with non-polar compact support K, we define the n-th Widom factor W²ₙ(μ) as the ratio of the Hilbert norm of the monic n-th orthogonal polynomial and the n-th power of the logarithmic capacity of K. If μ is regular in the Stahl-Totik sense then the sequence ( W ² ( μ ) ) n = 0 has subexponential growth. For measures from the Szegő class on [-1,1] this sequence converges to some proper value. We calculate the corresponding limit for the measure that generates the Jacobi polynomials, analyze...

Currently displaying 21 – 28 of 28

Previous Page 2