Über Endomorphismen mit dichten Bahnen.
In this paper a class of injective unilateral weighted shift operators is introduced which contains strictly the class of the strictly cyclic operators and which can only be unicellular if they are quasinilpotent.
Let be a sequence of positive numbers and 1 ≤ p < ∞. We consider the space of all power series such that . We give some sufficient conditions for the multiplication operator, , to be unicellular on the Banach space . This generalizes the main results obtained by Lu Fang [1].
An increasing sequence of positive integers is said to be a Jamison sequence if for every separable complex Banach space X and every T ∈ ℬ(X) which is partially power-bounded with respect to , the set is at most countable. We prove that for every separable infinite-dimensional complex Banach space X which admits an unconditional Schauder decomposition, and for any sequence which is not a Jamison sequence, there exists T ∈ ℬ(X) which is partially power-bounded with respect to and has the...