Page 1

Displaying 1 – 13 of 13

Showing per page

Measure of noncompactness of linear operators between spaces of sequences that are ( N ¯ , q ) summable or bounded

Eberhard Malkowsky, V. Rakočević (2001)

Czechoslovak Mathematical Journal

In this paper we investigate linear operators between arbitrary BK spaces X and spaces Y of sequences that are ( N ¯ , q ) summable or bounded. We give necessary and sufficient conditions for infinite matrices A to map X into Y . Further, the Hausdorff measure of noncompactness is applied to give necessary and sufficient conditions for A to be a compact operator.

Multipliers and Wiener-Hopf operators on weighted L p spaces

Violeta Petkova (2013)

Open Mathematics

We study multipliers M (bounded operators commuting with translations) on weighted spaces L ω p (ℝ), and establish the existence of a symbol µM for M, and some spectral results for translations S t and multipliers. We also study operators T on the weighted space L ω p (ℝ+) commuting either with the right translations S t , t ∈ ℝ+, or left translations P +S −t , t ∈ ℝ+, and establish the existence of a symbol µ of T. We characterize completely the spectrum σ(S t ) of the operator S t proving that...

Multipliers of spaces of derivatives

Jan Mařík, Clifford E. Weil (2004)

Mathematica Bohemica

For subspaces, X and Y , of the space, D , of all derivatives M ( X , Y ) denotes the set of all g D such that f g Y for all f X . Subspaces of D are defined depending on a parameter p [ 0 , ] . In Section 6, M ( X , D ) is determined for each of these subspaces and in Section 7, M ( X , Y ) is found for X and Y any of these subspaces. In Section 3, M ( X , D ) is determined for other spaces of functions on [ 0 , 1 ] related to continuity and higher order differentiation.

Currently displaying 1 – 13 of 13

Page 1