The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let , and . We show that there is a linear operator such that Φ(f)=f a.e. for every , and Φ commutes with all translations. On the other hand, if is a linear operator such that Φ(f)=f for every , then the group = a ∈ ℝ:Φ commutes with the translation by a is of measure zero and, assuming Martin’s axiom, is of cardinality less than continuum. Let Φ be a linear operator from into the space of complex-valued measurable functions. We show that if Φ(f) is non-zero for every , then must...
Currently displaying 1 –
4 of
4