O integralnoj reprezentaciji linearnog operatora
The main goal of this paper is to clarify the antisymmetric nature of a binary relation ≪ which is defined for normal operators A and B by: A ≪ B if there exists an operator T such that for all Borel subset Δ of the complex plane ℂ, where and are spectral measures of A and B, respectively (the operators A and B are allowed to act in different complex Hilbert spaces). It is proved that if A ≪ B and B ≪ A, then A and B are unitarily equivalent, which shows that the relation ≪ is a partial order...
We show that for a unitary operator U on , where X is a compact manifold of class , , and μ is a finite Borel measure on X, there exists a function that realizes the maximal spectral type of U.
Using [1], which is a local generalization of Gelfand's result for powerbounded operators, we first give a quantitative local extension of Lumer-Philips' result that states conditions under which a quasi-nilpotent dissipative operator vanishes. Secondly, we also improve Lumer-Phillips' theorem on strongly continuous semigroups of contraction operators.