Displaying 21 – 40 of 80

Showing per page

Weighted composition followed by differentiation between weighted Banach spaces of holomorphic functions

Wolf, Elke (2011)

Serdica Mathematical Journal

2010 Mathematics Subject Classification: 47B33, 47B38.Let f be an analytic self-map of the open unit disk D in the complex plane and y be an analytic map on D. Such maps induce a weighted composition operator followed by differentiation DCf, y acting between weighted Banach spaces of holomorphic functions. We characterize boundedness and compactness of such operators in terms of the involved weights as well as the functions f and y.

Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball

Yu-Xia Liang, Chang-Jin Wang, Ze-Hua Zhou (2015)

Annales Polonici Mathematici

Let H() denote the space of all holomorphic functions on the unit ball ⊂ ℂⁿ. Let φ be a holomorphic self-map of and u∈ H(). The weighted composition operator u C φ on H() is defined by u C φ f ( z ) = u ( z ) f ( φ ( z ) ) . We investigate the boundedness and compactness of u C φ induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.

Currently displaying 21 – 40 of 80