Displaying 41 – 60 of 227

Showing per page

Circular operators related to some quantum observables

Wacław Szymański (1997)

Annales Polonici Mathematici

Circular operators related to the operator of multiplication by a homomorphism of a locally compact abelian group and its restrictions are completely characterized. As particular cases descriptions of circular operators related to various quantum observables are given.

Clifford-Hermite-monogenic operators

Freddy Brackx, Nele de Schepper, Frank Sommen (2006)

Czechoslovak Mathematical Journal

In this paper we consider operators acting on a subspace of the space L 2 ( m ; m ) of square integrable functions and, in particular, Clifford differential operators with polynomial coefficients. The subspace is defined as the orthogonal sum of spaces s , k of specific Clifford basis functions of L 2 ( m ; m ) . Every Clifford endomorphism of can be decomposed into the so-called Clifford-Hermite-monogenic operators. These Clifford-Hermite-monogenic operators are characterized in terms of commutation relations and they...

Closed operator ideals and limiting real interpolation

Luz M. Fernández-Cabrera, Antón Martínez (2014)

Studia Mathematica

We establish interpolation properties under limiting real methods for a class of closed ideals including weakly compact operators, Banach-Saks operators, Rosenthal operators and Asplund operators. We show that they behave much better than compact operators.

Closed range multipliers and generalized inverses

K. Laursen, M. Mbekhta (1993)

Studia Mathematica

Conditions involving closed range of multipliers on general Banach algebras are studied. Numerous conditions equivalent to a splitting A = TA ⊕ kerT are listed, for a multiplier T defined on the Banach algebra A. For instance, it is shown that TA ⊕ kerT = A if and only if there is a commuting operator S for which T = TST and S = STS, that this is the case if and only if such S may be taken to be a multiplier, and that these conditions are also equivalent to the existence of a factorization T = PB,...

Co-analytic, right-invertible operators are supercyclic

Sameer Chavan (2010)

Colloquium Mathematicae

Let denote a complex, infinite-dimensional, separable Hilbert space, and for any such Hilbert space , let () denote the algebra of bounded linear operators on . We show that for any co-analytic, right-invertible T in (), αT is hypercyclic for every complex α with | α | > β - 1 , where β i n f | | x | | = 1 | | T * x | | > 0 . In particular, every co-analytic, right-invertible T in () is supercyclic.

Common extensions for linear operators

Rodica-Mihaela Dăneţ (2011)

Banach Center Publications

The main meaning of the common extension for two linear operators is the following: given two vector subspaces G₁ and G₂ in a vector space (respectively an ordered vector space) E, a Dedekind complete ordered vector space F and two (positive) linear operators T₁: G₁ → F, T₂: G₂ → F, when does a (positive) linear common extension L of T₁, T₂ exist? First, L will be defined on span(G₁ ∪ G₂). In other results, formulated in the line of the Hahn-Banach extension theorem, the common...

Commutants and derivation ranges

Salah Mecheri (1999)

Czechoslovak Mathematical Journal

In this paper we obtain some results concerning the set = R ( δ A ) ¯ { A } ' A ( H ) , where R ( δ A ) ¯ is the closure in the norm topology of the range of the inner derivation δ A defined by δ A ( X ) = A X - X A . Here stands for a Hilbert space and we prove that every compact operator in R ( δ A ) ¯ w { A * } ' is quasinilpotent if A is dominant, where R ( δ A ) ¯ w is the closure of the range of δ A in the weak topology.

Commutants of certain multiplication operators on Hilbert spaces of analytic functions

K. Seddighi, S. Vaezpour (1999)

Studia Mathematica

This paper characterizes the commutant of certain multiplication operators on Hilbert spaces of analytic functions. Let A = M z be the operator of multiplication by z on the underlying Hilbert space. We give sufficient conditions for an operator essentially commuting with A and commuting with A n for some n>1 to be the operator of multiplication by an analytic symbol. This extends a result of Shields and Wallen.

Currently displaying 41 – 60 of 227