Previous Page 5

Displaying 81 – 87 of 87

Showing per page

Functions of bounded variation on compact subsets of the plane

Brenden Ashton, Ian Doust (2005)

Studia Mathematica

A major obstacle in extending the theory of well-bounded operators to cover operators whose spectrum is not necessarily real has been the lack of a suitable variation norm applicable to functions defined on an arbitrary nonempty compact subset σ of the plane. In this paper we define a new Banach algebra BV(σ) of functions of bounded variation on such a set and show that the function-theoretic properties of this algebra make it better suited to applications in spectral theory than those used previously....

Functions of operators and their commutators in perturbation theory

Yu. Farforovskaya (1994)

Banach Center Publications

This paper shows some directions of perturbation theory for Lipschitz functions of selfadjoint and normal operators, without giving precise proofs. Some of the ideas discussed are explained informally or for the finite-dimensional case. Several unsolved problems are mentioned.

Currently displaying 81 – 87 of 87

Previous Page 5