Displaying 61 – 80 of 1072

Showing per page

A Pettis-type integral and applications to transition semigroups

Markus Kunze (2011)

Czechoslovak Mathematical Journal

Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators....

A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum

Charles Batty, Zdzisław Brzeźniak, David Greenfield (1996)

Studia Mathematica

Let T be a semigroup of linear contractions on a Banach space X, and let X s ( T ) = x X : l i m s T ( s ) x = 0 . Then X s ( T ) is the annihilator of the bounded trajectories of T*. If the unitary spectrum of T is countable, then X s ( T ) is the annihilator of the unitary eigenvectors of T*, and l i m s T ( s ) x = i n f x - y : y X s ( T ) for each x in X.

A Riccati equation arising in a boundary control problem for distributed parameters

Franco Flandoli (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si prova resistenza locale della soluzione di una equazione di Riccati che si incontra in un problema di controllo ottimale. In ipotesi di regolarità per il costo si prova resistenza globale. Il problema astratto considerato è il modello di alcuni problemi di controllo ottimale governati da equazioni paraboliche con controllo sulla frontiera.

A semigroup analogue of the Fonf-Lin-Wojtaszczyk ergodic characterization of reflexive Banach spaces with a basis

Delio Mugnolo (2004)

Studia Mathematica

In analogy to a recent result by V. Fonf, M. Lin, and P. Wojtaszczyk, we prove the following characterizations of a Banach space X with a basis. (i) X is finite-dimensional if and only if every bounded, uniformly continuous, mean ergodic semigroup on X is uniformly mean ergodic. (ii) X is reflexive if and only if every bounded strongly continuous semigroup is mean ergodic if and only if every bounded uniformly continuous semigroup on X is mean ergodic.

Currently displaying 61 – 80 of 1072