Quasi-compactness of dominated positive operators and C0-semigroups.
On considère un polynôme , à coefficients réels non négatifs, à deux indéterminées. On montre que la connaissance des pôles des intégralesdonne des renseignements sur les racines du polynômes de Bernstein de . La détermination des pôles des intégrales peut se faire en utilisant certaines méthodes de Mellin. Des calculs explicites sont donnés.
We give sufficient conditions for asymptotic stability of a Markov operator governing the evolution of measures due to the action of randomly chosen dynamical systems. We show that the existence of an invariant measure for the transition operator implies the existence of an invariant measure for the semigroup generated by the system.
Des semi-groupes de Feller locaux, deux à deux compatibles et définis sur des ouverts recouvrant un espace compact , se recollent en un semi-groupe de Feller local unique défini sur . Le principe du maximum joue un rôle essentiel dans la démonstration de ce résultat. Un théorème de recollement des générateurs infinitésimaux s’en déduit.
The main aim of our lectures is to give a pedagogical introduction to various mathematical formalisms used to describe open quantum systems: completely positive semigroups, dilations of semigroups, quantum Langevin dynamics and the so-called Pauli-Fierz Hamiltonians. We explain two kinds of the weak coupling limit. Both of them show that Hamiltonian dynamics of a small quantum system interacting with a large resevoir can be approximated by simpler dynamics. The better known reduced weak coupling...
Si studiano proprietà di regolarità di un integrale di convoluzione del tipo Itȏ.
Let (i = 1,2) be two arbitrary bounded operators on a Banach space. We study (C₁,C₂)-regularized cosine existence and uniqueness families and their relationship to second order abstract Cauchy problems. We also prove some of their basic properties. In addition, Hille-Yosida type sufficient conditions are given for the exponentially bounded case.
In this paper we get some relations between the boundary point spectrum of the generator A of a C0-semigroup and the generator A* of the dual semigroup. This relations combined with the results due to Lyubich-Phong and Arendt-Batty, yield stability results on positive C0-semigroups.