Displaying 1001 – 1020 of 1073

Showing per page

Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform

Ralph deLaubenfels (1992)

Studia Mathematica

Suppose A is a (possibly unbounded) linear operator on a Banach space. We show that the following are equivalent. (1) A is well-bounded on [0,∞). (2) -A generates a strongly continuous semigroup e - s A s 0 such that ( 1 / s 2 ) e - s A s > 0 is the Laplace transform of a Lipschitz continuous family of operators that vanishes at 0. (3) -A generates a strongly continuous differentiable semigroup e - s A s 0 and ∃ M < ∞ such that H n ( s ) ( k = 0 n ( s k A k ) / k ! ) e - s A M , ∀s > 0, n ∈ ℕ ∪ 0. (4) -A generates a strongly continuous holomorphic semigroup e - z A R e ( z ) > 0 that is O(|z|) in all...

Universal Jamison spaces and Jamison sequences for C₀-semigroups

Vincent Devinck (2013)

Studia Mathematica

An increasing sequence ( n k ) k 0 of positive integers is said to be a Jamison sequence if for every separable complex Banach space X and every T ∈ ℬ(X) which is partially power-bounded with respect to ( n k ) k 0 , the set σ p ( T ) is at most countable. We prove that for every separable infinite-dimensional complex Banach space X which admits an unconditional Schauder decomposition, and for any sequence ( n k ) k 0 which is not a Jamison sequence, there exists T ∈ ℬ(X) which is partially power-bounded with respect to ( n k ) k 0 and has the...

Wasserstein metric and subordination

Philippe Clément, Wolfgang Desch (2008)

Studia Mathematica

Let ( X , d X ) , ( Ω , d Ω ) be complete separable metric spaces. Denote by (X) the space of probability measures on X, by W p the p-Wasserstein metric with some p ∈ [1,∞), and by p ( X ) the space of probability measures on X with finite Wasserstein distance from any point measure. Let f : Ω p ( X ) , ω f ω , be a Borel map such that f is a contraction from ( Ω , d Ω ) into ( p ( X ) , W p ) . Let ν₁,ν₂ be probability measures on Ω with W p ( ν , ν ) finite. On X we consider the subordinated measures μ i = Ω f ω d ν i ( ω ) . Then W p ( μ , μ ) W p ( ν , ν ) . As an application we show that the solution measures ϱ α ( t ) to the partial...

Currently displaying 1001 – 1020 of 1073