The integral equation methods for the perturbed Helmholtz eigenvalue problems.
We shall show that every differential operator of 2-nd order in a real separable Hilbert space can be decomposed into a regular and an irregular operator. Then we shall characterize irregular operators and differential operators satisfying the maximum principle. Results obtained for the Lévy laplacian in [3] will be generalized for irregular differential operators satisfying the maximum principle.
We solve, in two dimensions, the "square root problem of Kato". That is, for L ≡ -div (A(x)∇), where A(x) is a 2 x 2 accretive matrix of bounded measurable complex coefficients, we prove that L1/2: L12(R2) → L2(R2).[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial (Madrid), 2002].
We shall consider the Schrödinger operators on with the magnetic field given by a nonnegative constant field plus random magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions...
Suppose is a nonnegative, locally integrable, radial function on , which is nonincreasing in . Set when and . Given and , we show there exists so that for all , if and only if exists with for all dyadic cubes Q, where . This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.
Let be a non-negative self-adjoint operator acting on satisfying a pointwise Gaussian estimate for its heat kernel. Let be an weight on , . In this article we obtain a weighted atomic decomposition for the weighted Hardy space , associated to . Based on the atomic decomposition, we show the dual relationship between and .