Espaces fonctionnels associés au calcul de Weyl-Hörmander (d'après un travail avec J.-M. Bony)
It is shown that maximal truncations of nonconvolution L²-bounded singular integral operators with kernels satisfying Hörmander’s condition are weak type (1,1) and -bounded for 1 < p< ∞. Under stronger smoothness conditions, such estimates can be obtained using a generalization of Cotlar’s inequality. This inequality is not applicable here and the point of this article is to treat the boundedness of such maximal singular integral operators in an alternative way.
The sub-Laplacian on the Heisenberg group is first decomposed into twisted Laplacians parametrized by Planck's constant. Using Fourier-Wigner transforms so parametrized, we prove that the twisted Laplacians are globally hypoelliptic in the setting of tempered distributions. This result on global hypoellipticity is then used to obtain Liouville's theorems for harmonic functions for the sub-Laplacian on the Heisenberg group.
We establish the Fredholmness of a pseudo-differential operator whose symbol is of class , , in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).
We discuss a recent necessary and sufficient condition for Melin's inequality for a class of systems of pseudodifferential operators.
This paper addresses the derivation of new second-kind Fredholm combined field integral equations for the Krylov iterative solution of tridimensional acoustic scattering problems by a smooth closed surface. These integral equations need the introduction of suitable tangential square-root operators to regularize the formulations. Existence and uniqueness occur for these formulations. They can be interpreted as generalizations of the well-known Brakhage-Werner [A. Brakhage and P. Werner, Arch....
We consider the fractional Laplacian on an open subset in with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such a Dirichlet fractional Laplacian in open sets. This heat kernel is also the transition density of a rotationally symmetric -stable process killed upon leaving a open set. Our results are the first sharp twosided estimates for the Dirichlet heat kernel of a non-local operator on open sets.
Quantized contact transformations are Toeplitz operators over a contact manifold of the form , where is a Szegö projector, where is a contact transformation and where is a pseudodifferential operator over . They provide a flexible alternative to the Kähler quantization of symplectic maps, and encompass many of the examples in the physics literature, e.g. quantized cat maps and kicked rotors. The index problem is to determine when the principal symbol is unitary, or equivalently to determine...
Dans ce travail, nous considérons un opérateur différentiel simple ainsi que des perturbations. Alors que le spectre de l’opérateur non-perturbé est confiné à une droite à l’intérieur du pseudospectre, nous montrons pour les opérateurs perturbés que les valeurs propres se distribuent à l’intérieur du pseudospectre d’après une loi de Weyl.
Starting from a general formulation of the characterization by dyadic crowns of Sobolev spaces, the authors give a result of continuity for pseudodifferential operators whose symbol a(x,ξ) is non smooth with respect to x and whose derivatives with respect to ξ have a decay of order ρ with . The algebra property for some classes of weighted Sobolev spaces is proved and an application to multi - quasi - elliptic semilinear equations is given.