Lévy processes, pseudo-differential operators and Dirichlet forms in the Heisenberg group
Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M. G. Kreĭn, given an atomless Borel probability measure supported on a compact subset of U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator and a second order differential operator , with respect to . We generalize this approach to measures of the form , where is non-atomic and is finitely supported. We determine analytic...
We prove that for symbols in the modulation spaces , p ≥ q, the associated multilinear pseudodifferential operators are bounded on products of appropriate modulation spaces. In particular, the symbols we study here are defined without any reference to smoothness, but rather in terms of their time-frequency behavior.
We prove that an almost diagonal condition on the (m + 1)-linear tensor associated to an m-linear operator implies boundedness of the operator on products of classical function spaces. We then provide applications to the study of certain singular integral operators.
We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all frequencies....
We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all...
Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.In this paper the multi-dimensional analog of the Gillis-Weiss random walk model is studied. The convergence of this random walk to a fractional diffusion process governed by a symmetric operator defined as a hypersingular integral or the inverse of the Riesz potential in the sense of distributions is proved.* Supported by German Academic Exchange Service (DAAD).