Displaying 181 – 200 of 266

Showing per page

Perturbed Proximal Point Algorithm with Nonquadratic Kernel

Brohe, M., Tossings, P. (2000)

Serdica Mathematical Journal

Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of these extensions...

Properties of a quasi-uniformly monotone operator and its application to the electromagnetic $p$-$\text {curl}$ systems

Chang-Ho Song, Yong-Gon Ri, Cholmin Sin (2022)

Applications of Mathematics

In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation $Au=b$. We prove that if $A$ is a quasi-uniformly monotone and hemi-continuous operator, then $A^{-1}$ is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence...

Pseudomonotonicity and nonlinear hyperbolic equations

Dimitrios A. Kandilakis (1997)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider a nonlinear hyperbolic boundary value problem. We show that this problem admits weak solutions by using a lifting result for pseudomonotone operators and a surjectivity result concerning coercive and monotone operators.

Second order difference inclusions of monotone type

G. Apreutesei, N. Apreutesei (2012)

Mathematica Bohemica

The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations.

Semigroups and generators on convex domains with the hyperbolic metric

Simeon Reich, David Shoikhet (1997)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let D be domain in a complex Banach space X , and let ρ be a pseudometric assigned to D by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping f : D X to be a generator of a ρ -nonexpansive semigroup on D in terms of its nonlinear resolvent. In the second section we let X = H be a complex Hilbert space, D = B the open unit ball of H , and ρ the hyperbolic metric on B . We introduce the notion of a ρ -monotone mapping and obtain simple characterizations of generators...

Currently displaying 181 – 200 of 266