Identification of hysteric control influence operators representing smart actuators. I: Formulation.
We consider the integral equation , with , and prove an existence theorem for bounded solutions where is not assumed to be continuous.
We propose a Halpern-type forward-backward splitting with inertial extrapolation step for finding a zero of the sum of accretive operators in Banach spaces. Strong convergence of the sequence of iterates generated by the method proposed is obtained under mild assumptions. We give some numerical results in compressed sensing to validate the theoretical analysis results. Our result is one of the few available inertial-type methods for zeros of the sum of accretive operators in Banach spaces.
We prove that a compact family of bounded condensing multifunctions has bounded condensing set-theoretic union. Compactness is understood in the sense of the Chebyshev uniform semimetric induced by the Hausdorff distance and condensity is taken w.r.t. the Hausdorff measure of noncompactness. As a tool, we present an estimate for the measure of an infinite union. Then we apply our result to infinite iterated function systems.
We consider a reaction-diffusion system of activator-inhibitor type which is subject to Turing's diffusion-driven instability. It is shown that unilateral obstacles of various type for the inhibitor, modeled by variational inequalities, lead to instability of the trivial solution in a parameter domain where it would be stable otherwise. The result is based on a previous joint work with I.-S. Kim, but a refinement of the underlying theoretical tool is developed. Moreover, a different regime of parameters...